Surname	Centre Number	Candidate Number
First name(s)		2
GCE AS		

WJEC B420U10-1

cbac

WEDNESDAY, 17 MAY 2023 – MORNING

PHYSICS – AS component 1 Motion, Energy and Matter

1 hour 30 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	13	
3.	10	
4.	11	
5.	11	
6.	12	
7.	9	
Total	75	

ADDITIONAL MATERIALS

In addition to this paper, you will require a calculator and a **Data Booklet**.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

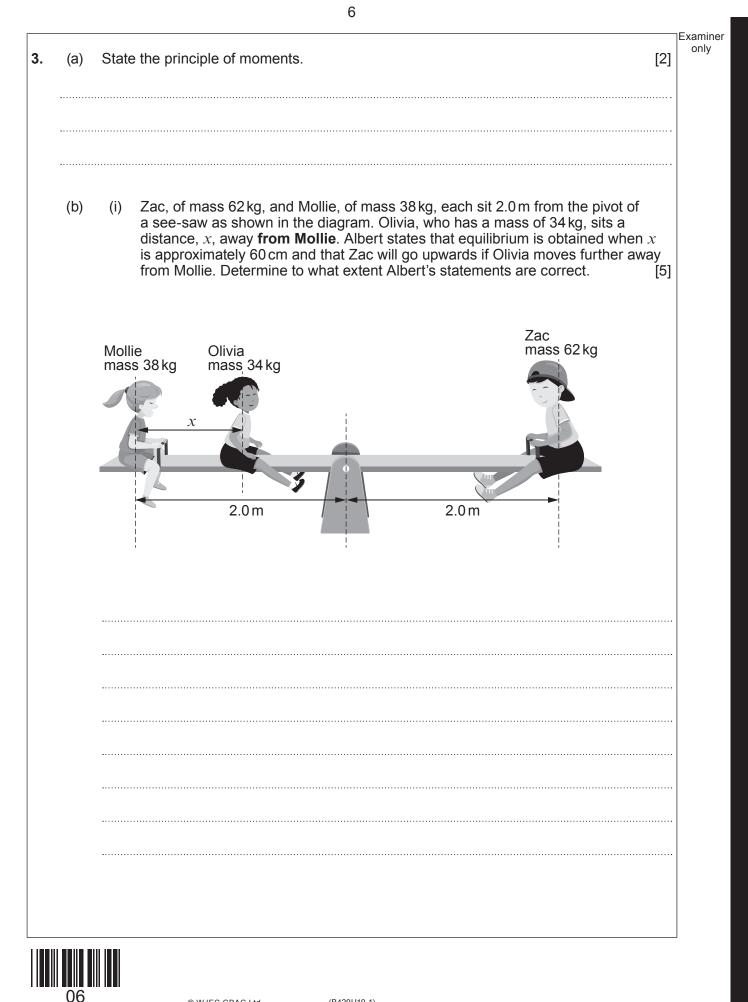
The total number of marks available for this paper is 75.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded to show all working. Credit is given for correct working even when the final answer is incorrect.

The assessment of the quality of extended response (QER) will take place in 2(a).

			all questions.	
) (i)	State the	e difference between a	vector and a scalar quantity.	[1]
 (ii)	The follc putting e you. force	each into the correct co kinetic energy	wavelength momentu	ady been done for [2]
			Scalar	
) (i)	Two peo of 80 N E	ple push a car, one wit East. Calculate the resu	th a force of 60 N North and the ultant of these two forces acting	other with a force on the car. [4]
••••••				
	(ii)	(ii) The folic putting e you. force	 (ii) The following quantities are eit putting each into the correct coryou. force kinetic energy density tem Vector Force (i) Two people push a car, one with 	 (ii) The following quantities are either vectors or scalars. Complete putting each into the correct column. The first quantity has alreyou. force kinetic energy wavelength momentudensity temperature weight



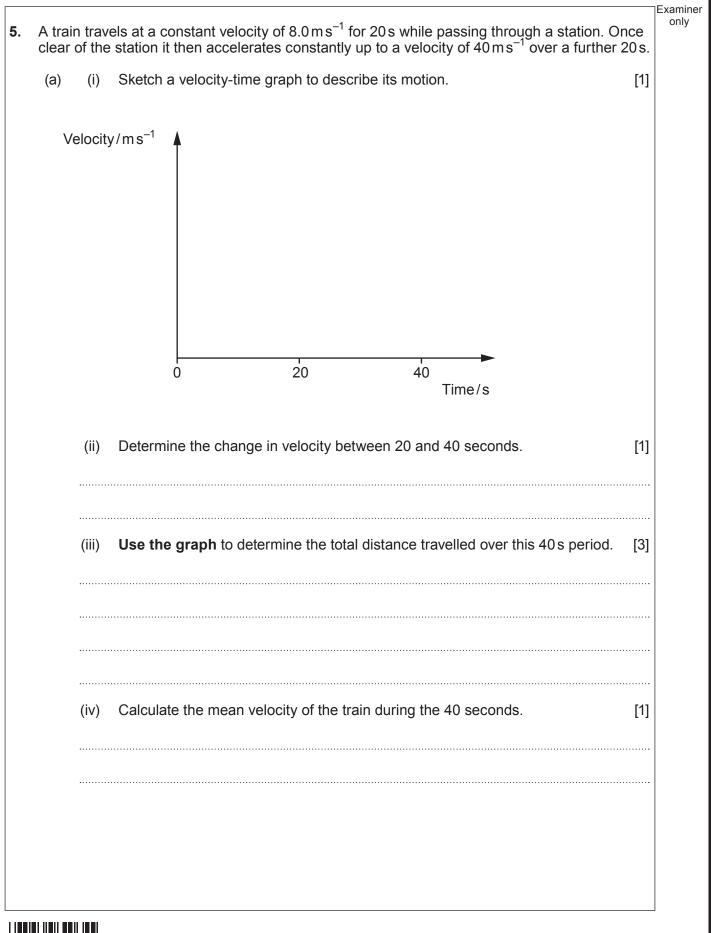
	(ii)	If the car moves at a constant velocity, state the magnitude and direction of the resistive force acting against the car.		xaminer only	
		resistive force acting against the car.	[2]		
				9	
				B420U101	
				B420	03
03		© WJEC CBAC Ltd. (B420U10-1) Turn ov	er.		

 (b) A copper wire 2.0m long of diameter 1.28 mm reaches its elastic limit when a load of 56N is added. (i) Calculate the stress at its elastic limit. 	nd ER]
(i) Calculate the stress at its elastic limit.	
(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
56 N is added.(i) Calculate the stress at its elastic limit.	
	[2]

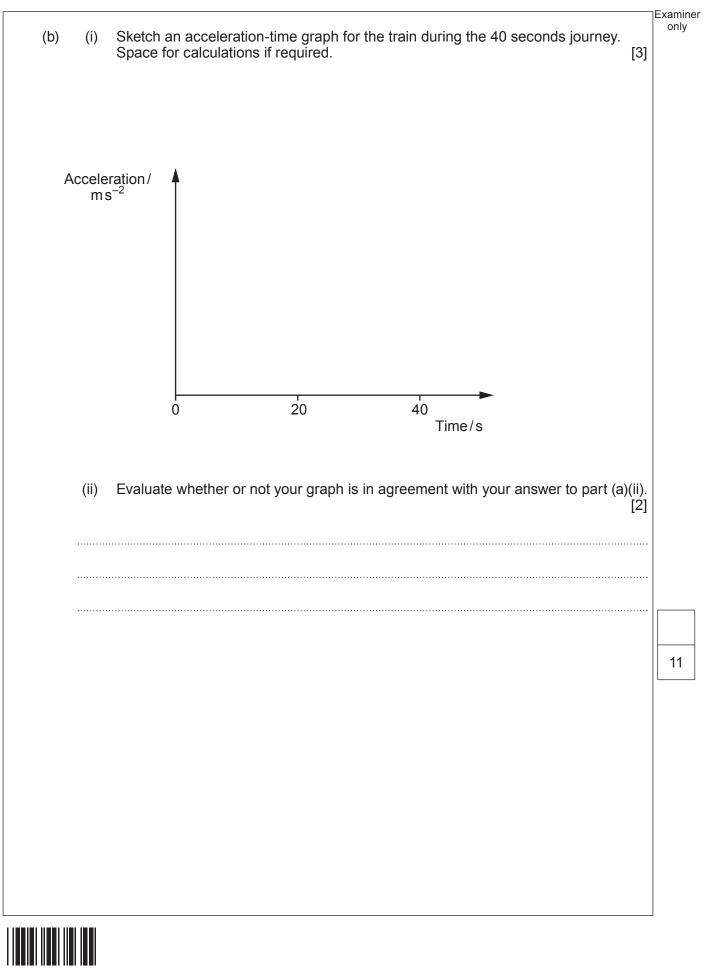
	(ii)	The wire has a Young modulus of 1.3×10^{11} Pa. Calculate the extension at its elastic limit.	[2]	on	
	······				
(C)	The units	usual unit for Young modulus is the Pascal (Pa). Express this in terms of SI base s.	[3]		
				1	-
05		© WJEC CBAC Ltd. (B420U10-1) Turn ov			

B420U101 07

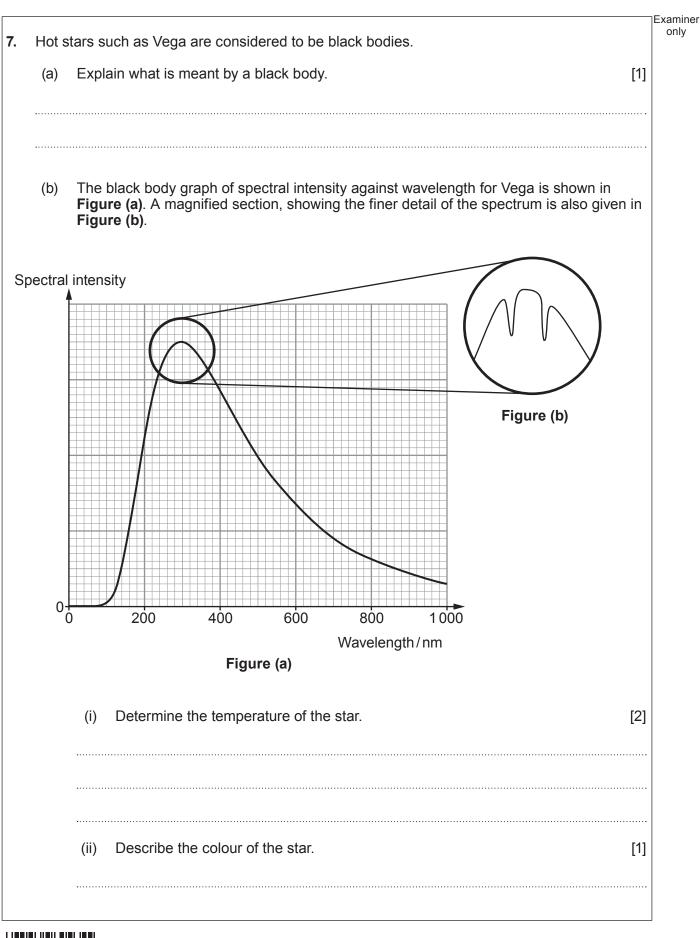
 (ii)	The see-saw has a mass of 40 kg. Calculate the force of the pivot on the see-saw when all three children are sitting on it. [3]	Examiner only
		10
		B420U101



(a)	Dete	ermine its volume along with the percentage uncertainty.	[3]
(b)	(i)	Determine the density of the ball bearing along with its absolute uncertainty. Quote your answer to an appropriate number of significant figures.	[6]
	 (ii)	Identify the main uncertainty in the experiment and explain how you could red	uce
		this.	[2]


BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE



Pa	article	e Symbol	Quark combination	Charge/e	Baryon number	Lepton number	
proto	on	р	uud	+1	+1	0	
delta	ı	Δ^{++}					
elect	ron	e ⁻					
pion		π^+					
neutr	rino	v _e					
		I				<u> </u>	
(a)	Com	plete the table.					[4]
			$10 \mathbf{D}_{2}$	${}^{10}_{5}\text{B} + \text{e}^{-} + \text{X}$			
			4 DC →	3 D + C + X			
			4 Be →	5D + C + IX			
	(ii)	State which for	₄ Be →		v. Explain your	answer.	[2]
	(ii)	State which for			v. Explain your	answer.	[2]
	(ii)	State which for			v. Explain your	answer.	[2]

(C)	Man CER	y fundamental particles have been discovered in the Large Hadron Collider at N.	Examiner only
	(i)	Explain what is meant by the term hadron.	[1]
	(ii)	Given the significance of CERN to the scientific community consider whether every country in the world should be contributing to its funding. Explain your answer.	[2]
	······		
			12
13		© WJEC CBAC Ltd. (B420U10-1) Turn c	over.

(c)	(i)	The dips in intensity in the spectrum (see Figure (b)), can be used to determine the elements making up the outer region of Vega. Explain how these dips arise.[3]	Examine only
	 (ii)	Use Figure (a) to determine the energy of a photon of light emitted by Vega at the peak of the curve. [2]	
			9
		END OF PAPER	
15		© WJEC CBAC Ltd. (B420U10-1) Turn over.	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

